Package: GHS 0.1

GHS: Graphical Horseshoe MCMC Sampler Using Data Augmented Block Gibbs Sampler

Draw posterior samples to estimate the precision matrix for multivariate Gaussian data. Posterior means of the samples is the graphical horseshoe estimate by Li, Bhadra and Craig(2017) <arxiv:1707.06661>. The function uses matrix decomposition and variable change from the Bayesian graphical lasso by Wang(2012) <doi:10.1214/12-BA729>, and the variable augmentation for sampling under the horseshoe prior by Makalic and Schmidt(2016) <arxiv:1508.03884>. Structure of the graphical horseshoe function was inspired by the Bayesian graphical lasso function using blocked sampling, authored by Wang(2012) <doi:10.1214/12-BA729>.

Authors:Ashutosh Srivastava<[email protected]>, Anindya Bhadra<[email protected]>

GHS_0.1.tar.gz
GHS_0.1.zip(r-4.5)GHS_0.1.zip(r-4.4)GHS_0.1.zip(r-4.3)
GHS_0.1.tgz(r-4.4-any)GHS_0.1.tgz(r-4.3-any)
GHS_0.1.tar.gz(r-4.5-noble)GHS_0.1.tar.gz(r-4.4-noble)
GHS_0.1.tgz(r-4.4-emscripten)GHS_0.1.tgz(r-4.3-emscripten)
GHS.pdf |GHS.html
GHS/json (API)

# Install 'GHS' in R:
install.packages('GHS', repos = c('https://ash0204.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 2 scripts 102 downloads 3 mentions 1 exports 1 dependencies

Last updated 6 years agofrom:41da5b01a8. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 05 2025
R-4.5-winOKJan 05 2025
R-4.5-linuxOKJan 05 2025
R-4.4-winOKJan 05 2025
R-4.4-macOKJan 05 2025
R-4.3-winOKJan 05 2025
R-4.3-macOKJan 05 2025

Exports:GHS_est

Dependencies:MASS